A New Grid Server

Kenji Arisawa
Aichi University, Nagoya, Japan

arisawa@aichi-u.ac.jp

Abstract

A new type of data server is proposed'. The server is
designed for grid computing. The distinctive feature of
the server is: that enables to execute programs of clients
without allowing any byte to be written to the server.
Therefore we need not allocate storage space for clients,
which means the time and labor will be reduced greatly,
and in addition, we can keep the server perfectly clean.

1 Introduction

Plan 9 is designed as a distributed operating system?.
Therefore, the OS has many nice features for grid com-
puting as shown in the paper by Mirtchovski et al.[2]
and also with more detailed descriptions in the thesis by
Mirtchovski[3]. Stimulated by these works, people in
9fans® devoted themselves to grid computing around the
year 2005. From that exercise, they got some fruitful re-
sults and ideas to the future. These experiences are sum-
marized on Bell-labs website[4]. However, the activity
had ended up without making nice pieces of ideas into
reality.

Recently Big Data is talked about. By “Big Data” I
mean those data that is inappropriate to be transferred
across network. We should note that programs are much
smaller then data. Therefore, the data should be pro-
cessed at the server side by transferring programs to the

I'This paper is based on the auther’s webpage[1] and is rewritten for
those who are unfamiliar to Plan 9, discarding some contents that are
not essential to the subject matter.

2In this paper “Plan 9 from Bell Labs” is referred to as “Plan 9”.
Plan 9 is originally developed by the people in Computing Sciences
Research Center at Bell Labs, the same research group that developed
Unix operating system. Plan 9 has many innovative features and is now
available under the GNU Public License. There was many documents
on Plan 9 on the website plan9.bell-labs.com. Unfortunately the site
is now closed after the Labs belongs to Nokia. These documents are
still kept on some mirror sites in the Internet. It is recommended to
read the concept outlined by original authors [7].

3Name of mailing list 9fans@9fans.net.

server. Then we need remote login. In such case, security
does matter.

The server I proposed in this paper is a magical server
for those who don’t know Plan 9. Consider the require-
ment:

Clients need to execute their programs in the
server, on the other hand, the server does not
want any byte to be written into the server’s
storage.

Is it possible to construct such a server that allows exe-
cution of the client programs without allowing any byte
to be written? Yes possible! If we have such a server, we
need not allocate user’s storage space in the server side,
which means the time and labor are reduced greatly. In
addition, we can perfectly keep the server clean.

Remote execution command ssh is a common tool to-
day in Unix world. Instead, Plan 9 uses cpu command
for remote execution*. The command is different from
ssh (or telnet) in that it is not only for command execu-
tion but also it mounts local file system to the remote side
on the fly. The mount point is /mnt/term in the server’s
name space. The trick is in multiplexed communication
channel between client and server. Files in local side are
visible in remote side. This means we no longer need
traditional tools such as ftp nor scp to transfer files from
locale side to remote side, and furthermore, we need not
edit files in remote side. They are editable in local side
and the effect is immediately reflected on the remote side.

Grid computings today have been developed in
Unix world and mainly based on the softwares from
Globus[5]. They need distributed accounting with dis-
tributed file system so that users are permitted to login
and so that storage space is allocated to the users for lo-
cating their programs, which however needs high level
collaboration. The mechanism proposed here makes it

4Look the reference [9] for the command.

needless to allocated users space, which means: grid sys-
tems may become greatly simplified®. The server is de-
signed dreaming to be a base model for future grid com-
puting that enables collaboration among wider range of
people, and also that enables perfect cleanness to keep
the computing service. The server is constructed on those
nice pieces of ideas discussed in Plan 9 users group[4].

2 Login

In entering the grid server, you need to be registered as a
user of plan9.bell-labs.com®. If you are registered as
a user, then execute:

cpu -h grid.nyx.link -k ’dom=outside.plan9.bell-labs.com’
with factotum’ key

key dom=outside.plan9.bell-labs.com proto=p9skl user=XXXXX
!password=YYYYY

where XXXXX is your ID and YYYYY is your password. At-
tribute/value pairs that follow key must be in a single
line®. If you succeed in login, you will see the prompt
“grid%’.

3 The Grid Server

Try first:
ps
then you will find some strings
XXXXX@outside.plan9.bell-labs.com
in the output, where XXXXX is your ID on the domain
outside.plan9.bell-labs.com. The list below is the
example.

grid% ps

arisawa 1 0:00 0:00 256K Await bootrc

arisawa 2 0:00 0:00 OK Wakeme mouse

none 369 0:00 0:00 132K Open listen

none 370 0:00 0:00 132K Open listen
arisawa@outside.plan9.bell- 20188 0:00 0:00 124K Await gcpu
arisawa@outside.plan9.bell- 20195 0:00 0:00 240K Await rc
arisawa@outside.plan9.bell- 20196 0:00 0:00 124K Pread gcpu
arisawa@outside.plan9.bell- 20247 0:00 0:00 116K Pread ramfs
arisawa@outside.plan9.bell- 20252 0:00 0:00 92K Pread ps
grid%

The XXXXX@outside.plan9.bell-labs.com is a process
owner’s ID in the grid server. The ID is not registered to
file system of the server. Then Plan 9 allows the process
to use the file system as user name none. What if another
user, say, YYYYY@outside.plan9.bell-labs.com is log-
ging then? Both processes are playing as user none to
the file system. If those grid user are allowed writing

STn Plan 9, permitting to enter the server does not mean giving an
account on the file system. The proposed grid server needs only au-
thentication for a user to enter the server so that process owner on the
server are guaranteed to be unique.

SIf you don’t have a user account of outside.plan9.bell-labs.com,
please email to me. I can offer you a user account to my grid server. It
seems that new bell-labs account is now closed.

7Name of authentication proxy for Plan 9. Look the reference [6].

8Note that factotum accepts ticket from one or more authentication
domains.

to the file server, they will interfere. However you need
not worry about because writing to the shared file system
is disallowed. Writing to private file system is allowed.
One example is ramfs® mounted on /tmp (and bound to
/usr/none/tmp). The disk is automatically provided to
grid users for temporal use and automatically disappears
as the user logged out. Another example is client file sys-
tem mounted on /mnt/term. The grid user’s process can
accesses the client file system as if the user operates in
local side.

Try second:
1ls /usr

then the command shows the list of home directories
of users: /usr/none, /usr/arisawa and in addition,
some other directories, say, /usr/glenda and etc. In the
list, /usr/none and /usr/arisawa are directories of the
server'®, On the other hand, /usr/glenda and etc are
directories of the client, which are produced by the com-
mand

bind -a /mnt/term/usr /usr
where bind is one of commands that is used in configur-
ing name space[10]. Plan 9 name space can be config-
ured very flexibly. The name space under /usr is private
to the client and is hidden to other users; and note: the
name space that is visible by grid users is only a small
portion of system name space!!.

Try third:

acme

You can browse files on the grid server using Plan 9 text
editor acme[8]. The editor supports mouse-operation and
multi-windows. Regular users can run commands in the
window of acme. However grid users are disabled this
functionality'?. They need to run commands outside of
acme. Any user has privilege to access his local files.
Hence you can edit your files using acme on grid server.
(And of course also on your local machine.) In process-
ing data in grid server, you probably need your own pro-
grams. Except a few operations, the grid server allows
executing your programs even if that are binary executa-
bles compiled on the local side. Your commands are in
/mnt/term/bin or somewhere else under /mnt/term'3, If
you want to save something, you can write it to your own
storage through /mnt/term/usr.

9Look man page RAMFS(4) [11].

101t is not nice to expose /usr/arisawa. The directory is required for
some special services.

""When you enter the grid server, look /usr/none/1lib/profile for
the name space configuration and look /usr/arisawa/src/grid for the
grid patches.

12This inconvenience comes from: grid users are disallowed mount
operation.

131f object code type is different between client and server, the situ-
ation is somewhat complicated. Then we need to have the executable
for the server.

4 Security

In accessing grid servers, we use cpu command. Then
your processes on the grid server have ability to access
your local machine. This means you have a potential
security risk when you are compromised on the server
side!*. Therefore it is safe to export only a portion of
namespace of your file system to grid server. Plan 9 cpu
command has -P option for this purpose. However, un-
fortunately, this option does not work well. Another way
is to construct minimum namespace to export in execu-
tion cpu command. To do this, create the following files
in somewhere, for example in /usr/none/lib.

term% pwd

/usr/none/lib

term% lr -1 grid
d-rwxrwxr-x arisawa sys
d-rwxrwxr-x arisawa sys
d-rwxrwxr-x arisawa sys
d-rwxrwxr-x arisawa sys
--rw-rw-r-- arisawa sys
--rw-rw-r-- arisawa sys
d-rwxrwxr-x arisawa sys
--Iw-rw-r-- arisawa sys
d-rwxrwxr-x arisawa sys
d-rwxrwxr-x arisawa sys
d-rwxrwxr-x arisawa sys
--rW-rw-r-- arisawa sys
--rW-ru-r-- arisawa sys
d-rwxrwxr-x arisawa sys
d-rwxrwxr-x arisawa sys
d-rwxrwxr-x arisawa sys
d-rwxrwxr-x arisawa sys
d-rwxrwxr-x arisawa sys
d-rwXrwxr-x arisawa sys
--IW-rw-r-- arisawa sys
termd%

0 2015/12/24 13:29:26 grid

0 2015/12/24 13:26:44 grid/ns

0 2015/12/16 23:05:16 grid/ns/bin

0 2015/12/24 12:54:23 grid/ns/dev

0 2015/12/24 12:54:11 grid/ns/dev/cons

0 2015/12/24 12:54:11 grid/ns/dev/consctl

0 2015/12/24 12:54:23 grid/ns/dev/draw

0 2015/12/24 12:54:11 grid/ns/dev/random

0 2015/12/25 09:13:14 grid/ns/env

0 2015/12/24 02:07:26 grid/ns/mnt

0 2015/12/17 ©5:41:17 grid/ns/mnt/factotum

0 2015/12/17 ©5:32:11 grid/ns/mnt/factotum/ctl
0 2015/12/17 05:41:17 grid/ns/mnt/factotum/log
0 2015/12/24 02:07:26 grid/ns/mnt/wsys

0 2015/12/16 23:15:39 grid/ns/net

0 2015/12/24 12:52:41 grid/ns/proc

0 2015/12/25 €9:25:52 grid/ns/usr

0 2015/12/25 09:25:52 grid/ns/usr/glenda

0 2015/12/25 09:25:52 grid/ns/usr/none

89 2015/12/24 13:29:45 grid/patt

In this list, /usr/glenda is assumed to be exported, and
grid/patt is a pattern file for cpu command. The content
is:

- /mnt/factotum
- /mnt/wsys/(.*/)?(text|screen|window)

And have a new cpu command, for example sgcpu (safe
guard cpu) with the contents:

#!/bin/rc

rfork ne

cd /usr/none/lib/grid

for(f in cons consctl draw random)
bind /dev/$f ns/dev/$f

for(f in bin net proc)

bind /$f ns/$£f

bind -c ’#e’ ns/env

bind -a /mnt/factotum ns/mnt/factotum
bind /mnt/wsys ns/mnt/wsys

bind -a /usr/none ns/usr/none

bind -a /usr/glenda ns/usr/glenda ## example
bind ns /

cd /usr/none

/bin/cpu -P lib/grid/patt $*

Finally, using this new command, execute:
sgcpu -h grid.nyx.link -k ’dom=outside.plan9.bell-labs.com’

14The problem happens if the server itself is a honeypot.

5 Disabled Operations

The following operations are disabled:
e networking
e writing to permanent storage.
e looking private information.

There was an argument in 9fans whether networking
should be disabled or not. In some cases, it would be
better to allow networking so that the grid users can im-
port external data to the server. Then, however, we have
risk that the server is used for undesirable purpose. The
proposed grid server disables networking. Even if a user
needs external data on the grid server, he can do as fol-
lows:
import the data to the client and then execute cpu com-
mand.

6 Technical Notes

Host owner'> and user none are special users in Plan 9.
Other users are devided in two categories in this grid
server:

e regular users
e grid users

Host owner can do everything. User none is for net-
work services. Grid users are restricted in small subset
of namespace. For any users, mount/unmount operation
is disabled after “rfork m”'® (by kernel patch).

The following operations are disabled for regular users:

o networking (by kernel patch)
e becoming user none (by kernel patch)

The following operations are disabled for grid users:
e networking (by kernel patch)
e becoming user none (by kernel patch)
e mounting/unmounting (by “rfork m”)
e writing to permanent storage. (by Plan 9 commands)

Ramfs is provided for grid users. Any user (including
grid user) can read/write files in client side.

Known problem with process creation is fixed by ker-
nel patch as follows:
e new process creation by kernel, host owner and user none
are kept unchanged.
o others may fail in rfork ().

This strategy is not perfect, but working reasonably. We
need more work to make more robust kernel.

15The user who started the server.

16The command “rfork m” is used to disallow mount or bind op-
eration. However unmount is allowed, which makes encapsulations of
some sort of applications difficult. This problem is fixed in the grid
kernel.

References

[1] Kenji Arisawa, “A New Grid Server”
http://plan9.aichi-u.ac.jp/9grid2/9grid.html

[2] Andrey Mirtchovski, Rob Simmonds and Ron Min-
nich, “Plan 9 an Integrated Approach to Grid Com-
puting”

Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International

[3] Andrey A. Mirtchovski, “Grid Computing with
Plan 9 an Alternative Solution for Grid Comput-
ing”
http://mirtchovski.com/p9/thesis.pdf (2005)

[4] Plan 9 Wiki, “9grid”
http://p9.nyx.link/wiki/9grid/

[5] Globus, “Research data management simplified”
https://www.globus.org/

[6] Russ Cox, Eric Grosse, Rob Pike, Dave Presotto
and Sean Quinlan, “Security in Plan 9”
Proceedings of the 11th USENIX Security Sympo-
sium, 2002
https://www.usenix.org/legacy/event/sec02/cox/cox.pdf

[7] Rob Pike, Dave Presotto, Sean Dorward, Bob Flan-
drena, Ken Thompson, Howard Trickey and Phil
Winterbottom, “Plan 9 from Bell Labs”

Plan 9 Programmer’s Manual, Volume 2, 1995
http://doc.cat-v.org/plan_9/4th_edition/papers/9

[8] Rob Pike, “Acme: A User Interface for Program-
mers”’
Plan 9 Programmer’s Manual, Volume 2, 1995
http://doc.cat-v.org/plan_9/4th_edition/papers/acme/

[9] Plan9, “CPU(1)”
Plan 9 Programmer’s Manual, Volume 1, 1995
http://man.cat-v.org/plan_9/1/cpu

[10] Plan9, “BIND(1)”
Plan 9 Programmer’s Manual, Volume 1, 1995
http://man.cat-v.org/plan_9/1/bind

[11] Plan9, “RAMFS(4)”
Plan 9 Programmer’s Manual, Volume 1, 1995
http://man.cat-v.org/plan_9/4/ramfs

