
Plan 9 – an Integrated Approach to Grid Computing

Andrey Mirtchovski
University of Calgary

mirtchov@cpsc.ucalgary.ca

Rob Simmonds
University of Calgary

simmonds@cpsc.ucalgary.ca

Ron Minnich
Los Alamos National Laboratory∗

rminnich@lanl.gov

Abstract

This paper describes the use of the “Plan 9 from Bell
Labs” distributed operating system as a Grid Computing
infrastructure. In particular it compares solutions using the
de facto standard middleware toolkit for grids, Globus, to
an environment constructed using computers running the
Plan 9 operating system. These environments are compared
based on the features they offer in the context of grid com-
puting: Authentication, Security, Data Management, and
Resource Discovery.

1. Introduction

Grid Computing describes computation in which jobs
are run on a distributed computational unit spanning two or
more administrative domains. It has sparked tremendous
excitement among scientists worldwide and has renewed
the interest of the scientific community toward distributed
computing, an area which was almost forgotten during the
90’s.

A relatively new but fast growing field in Computer Sci-
ence, Grid Computing involves the utilization of disparate
resources toward the goal of solving complex problems re-
quiring technology at a level not always available to a single
organization. Many scientists believe that the next evolu-
tionary step of High Performance Computing will require a
departure from the single all-encompassing supercomputer
toward arrays of small, heterogeneousclustersof comput-
ers, much like today’s Beowulf-style [1] installations [2].

Due to their single-purpose design and the fact that
they’re tightly coupled with the specific organization that

∗Los Alamos National Laboratory, an affirmative action/equal opportu-
nity employer, is operated by the University of California for the United
States Department of Energy, under contract W-7405-ENG-36. LANL
publication: LA-UR-03-8428

builds them, clusters do not address one of the major re-
quirements of today’s scientific world – cross organization
collaborational computational. Supercomputers are still
quite expensive to buy, and it is often the case that a re-
search or commercial organization is able to afford only one
such system. In contrast, by allowing other organizations to
share their computational resources, a distributed environ-
ment could be created comprising a sum of the shared en-
tities. In other words, scientists need software that is able
to utilize resources not only physically, but administratively
separated from the original host’s environment.

Several toolkits are being developed that provide a dis-
tributed environment without requiring large modifications
in the code of the programs being run. Here we discuss
one of them:Globus, the open source toolkit which has be-
come thede factostandard in Grid Computing and compare
it with Plan 9 from Bell Labs, a distributed operating system
able to create and maintain per-process distributed environ-
ments independent of the physical location of resources.

Globus and Plan 9 represent two different approaches to
creating Grids. Globus provides an add-on to enable Grid
computing on top of other operating systems, while Plan 9
allows for the creation of Grids with no changes or addi-
tional middleware.

Globus offers a set of user-level tools to provide an en-
abling grid infrastructure for legacy operating systems such
as Unix and Windows. Since the basic architecture of
these operating systems predates networking and the Inter-
net, they are not well suited to a distributed environment.
Globus is therefore needed so that they can function as com-
ponents of a distributed computing architecture.

Plan 9 on the other hand was designed from the ground
up as a distributed system: the architecture of Plan 9 is in-
herentlygrid-enabled. As we show in this paper, our Grid
system“9grid” is functioning already as a Grid with no ad-
ditional software needed; it took just a few days to set up
the initial sites and start computations. Thus, Plan 9 can be



thought of as taking anintegratedapproach to Grid comput-
ing.

Each system has its advantages. Globus provides add-
on support for legacy systems that could not be used in a
Grid in any other way, and hence can take advantage of the
huge base of applications software that those legacy sys-
tems support. Plan 9, with its integrated approach to Grid
computing, has an advanced security infrastructure and is
less difficult to set up in a distributed environment.

Other, commercial solutions for Grid Computing exist,
however they haven’t matured and gained wide acceptance
yet, partly due to the fact that their closed-source nature
does not fit well with the current trend towards Open Source
solutions among the scientific community.

1.1. Globus

The Globus toolkit [17] was created in the late 1990s
as part of a joint research project between Argonne Na-
tional Laboratory and the Information Sciences Institute at
the University of Southern California. Its aim was to pro-
vide a solution to the computational needs of large virtual
organizations [4] that span multiple institutional and admin-
istrative domains. Globus is a middleware toolkit that pro-
vides fundamental distributed computing services such as
authentication, job starting and resource discovery.

While there are other Grid computing toolkits available,
Globus currently provides a de facto standard due to its de-
velopment being closely tied to the formulation of the Open
Grid Services Architecture (OGSA) standard [3]. Once
OGSA and other standards being developed by the Global
Grid Forum (GGF) are finalized, it is likely that commer-
cial toolkits that adopt these standards, and therefore can
inter-operate with Globus environments, will become more
popular.

Globus provides a collection ofservices [5] includ-
ing: GSI, Grid Security Infrastructure which provides au-
thentication based on a Certificate Authority trust model;
GRAM , Grid Resource Allocation Manager which han-
dles job starting or submission;GridFTP , providing exten-
sions to the FTP standard to provide GSI authentication and
high performance transfer;MDS, Monitoring and Discov-
ery Service enabling remote resource discovery.

By itself Globus does not provide all of the tools and
services required to implement a full featured distributed
computing environment. Additional tools are available to
fill some of the gaps. The National Center for Supercom-
puting Applications (NCSA) provides a patch to add GSI
authentication to OpenSSH. This allows Globus environ-
ments to have terminal based single-signon. Globus does
not provide any scheduling functionality, but rather relies
on the client operating system scheduler or batch schedulers
such as OpenPBS [20] to handle local scheduling activities.

Global scheduling between Globus processes can be pro-
vided by meta-schedulers, such as Condor-G [21]. Condor-
G submits jobs to the GRAM service running on Globus
nodes and GRAM handles the task of submitting the job to
the local scheduling system.

Other additional services, such as high level data man-
agement services and credential repositories will be dis-
cussed in later sections.

1.2. Plan 9

Plan 9 [7] is a distributed operating system created in the
late 80’s by a research group in Bell Labs, the same one that
designed UNIX; the first Plan 9 distribution was released in
1991. Plan 9 is an attempt to address fundamental issues
with UNIX’s design, some of which come from the fact that
it was originally concieved in an environment lacking many
familiar tools, such as networking or graphical display ter-
minals. Both networking and graphics were added later on
in the life of the OS, but every new layer accommodating a
new type of hardware has created more complexity due to
the large amounts of code associated with it, and the con-
stantly changing interface requirements. Plan 9 is designed
with simplicity in mind, which is best illustrated by compar-
ing the two code bases for Globus and Plan 9: the Globus
Toolkit v2.4 consumes, in archived form, as much space as
the entire Plan 9 operating system image.

As issues in UNIX were addressed in Plan 9’s design,
the system was also extended beyond the timesharing main-
frame and personal workstation environment to accommo-
date networks and the fast growing cheap commodity hard-
ware market. The early trend of the 1990’s was to switch
away from the organizational mainframe and into cheaper
workstation-based computing, thus Plan 9 was designed to
create a distributed environment comprised of cheap com-
puters as terminals and fast, expensive servers as stirage and
CPU cycles providers [7].

Other distributed operating systems such as Sprite [22]
and Amoeba [23] exist, but the environments they build are
tightly coupled within the OS, making communication with
external services difficult. Such systems suffer from the rad-
ical departure from the UNIX model, which also discour-
ages portability of already existing software to the platform
or in the case of Sprite, evolve into a file system running on
top of UNIX kernels. The lack of developers, the very small
range of supported hardware and the small, even compared
to Plan 9, user base have also significantly slowed the adop-
tion of those systems outside of their research communities.
In retrospect, Plan 9 was the only research distributed OS
from that time which managed to attract developers and be
used in commercial projects long enough to warrant its sur-
vival to this day. In Plan 9 the ANSI-Posix environment [6]
solves the portability problem. Most non-graphical UNIX



applications can easily be compiled for Plan 9, and in most
cases rewriting an application to run natively on Plan 9 in-
volves removing large chunks of code dealing with incon-
sistencies between UNIX variants, which simply do not ex-
ist in Plan 9.

What separates Plan 9 from other distributed systems is
the ease with which design considerations for new com-
puting models were accommodated with widely adopted
and accepted UNIX paradigms. For example all resources
in Plan 9, including files, devices, graphical, network and
other subsystems, are represented as files and directories
comprising a hierarchical file structure called anamespace.
A uniform access protocol means that in contrast to Linux
for example, which has almost 300 system calls to man-
age many different types of resources, Plan 9 has 40 system
calls and a uniform method for enumerating and controlling
resources, which are presented to applications as a directory
structure.

Resource control is accomplished via a simple and con-
sistent interface. Each device or file system presents at least
two files for process interaction – one for control messages
and one for data, usually calledctl anddata . Control
operations on the device are performed by writing plain text
messages to the control file, status is obtained by reading
from the same file. Any data that needs to be transferred to
and from the device is read or written from the data file.
This interface extends to all resources in the system and
is universally adopted throughout the environment. It also
works transparently over a network, as do all Plan 9 opera-
tions. For example, a process or a device such as network
interface on a remote computer can be imported and con-
trolled as though it was local. Resources are functionally
equivalent regardless of their location on the grid.

The different services provided by the operating systems
are joined together as needed in a single namespace, private
to the process which created it. This process can pass the
namespace on to its children unmodified, and even export it
for descendants running on other nodes.

Plan 9 also separates CPU (doing the computation), ter-
minal (providing end-user displays) and storage servers so
that they can run on different hardware, which may be op-
timized particularly for the job; for example it is not un-
common to run multiprocessor servers as CPU nodes and
have a hardware RAID controller serving as the storage de-
vice. This greatly reduces the cost of hardware and main-
tenance since it concentrates expensive equipment in the
server room, while users may run on inexpensive terminals
containing just a display, mouse and keyboard. The pro-
tocols used to access file servers are security hardened to
the extent that servers need not hide behind firewalls. The
main Plan 9 file server at Bell Labs is outside the Bell Labs
firewall.

2. Authentication

Our discussion of authentication mechanisms in a grid
environment is concerned with the ability of the environ-
ment management system to handle proving a user’s iden-
tity and the deployment and storage of security information.
This section presents the authentication mechanisms cur-
rently in use by Globus and Plan 9 and expands on possible
ways of extending accounts on the grid to carry information
relevant to an environment spanning multiple administrative
domains.

2.1. Authentication in Globus

Globus employs an authentication scheme using X.509
certificates for user identification, and TLS and SSL proto-
cols for transport layer security [16]. Each user has a pass-
word protected private key and an X.509 certificate that is
signed by aCertificate Authority (CA). In order for a user
to authenticate with a Globus service, the service must trust
the particular CA that signed the user’s certificate. This trust
is established by installing a set of files describing the CA
in a secure directory on the host running the Globus service.
The service trusts the CA to determine the correct identity
of a user that it issues a certificate to and to revoke certifi-
cates that have been compromised in some way.

To initialize their authorization environment a user runs
a command that uses their private key and signed certifi-
cate to generate a new certificate called a proxy certificate,
that contains a digest of the private key and signed certifi-
cate. This proxy certificate is then used to authenticate with
Globus services and provides single-signon to the Grid en-
vironment.

Each proxy certificate is given a limited lifetime to re-
duce the chance that a proxy certificate is stolen by an ad-
versary and used by this adversary to launch an attack on its
original owner. Proxy certificates are stored in temporary
directories and protected only by the file-permission mech-
anism employed by the host OS. This means that the level of
risk of having a proxy certificate stolen depends on security
of each host OS in the environment.

As jobs are started on a remote host, authorization priv-
ileges are delegated to the remote host by generating a new
proxy certificate on it. One security feature of this scheme is
the ability to create “limited” proxy certificates that are only
recognized when using the GridFTP service. This prevents
a stolen proxy from being used for anything other than au-
thenticating with GridFTP servers, i.e., being used to trans-
fer files.

The MyProxy service [11] from NCSA provides the
means for users to store proxy certificates in an on-line
repository and to use these proxy certificates to generate
short lived proxy certificates when required. This removes



the need for a user to have access to their private key when
they are away from their home system. They do need to be
able to connect to the MyProxy server holding a valid proxy
certificate. MyProxy can also be used by trusted services,
such as for example a particular meta-scheduler, to renew a
proxy certificate for a user before starting a job.

2.2. Authentication in Plan 9

Authentication in the Plan 9 distributed environment [9]
is delegated outside of the application and is performed by
dedicated authentication, orauth servers. It is completely
independent of the software, services or architecture under-
lying the environment it authenticates for.

The authentication agent in Plan 9 is calledfactotum.
Factotum is the only program in Plan 9 that understands
authentication protocols, security keys and the mechanisms
for their deployment. This agent stores the authentication
keys for the programs with which it shares the environment
and performs authentication both as a client and as a server,
being able to assume both sides of an identity proof dialog
in the course of a single session.

Factotum does not communicate with external programs
directly, instead it isconsultedby local entities sharing its
namespace whenever authentication information is needed.
After receiving a request for establishing a trust relation-
ship, a client will act as a proxy – relaying communication
messages between the client’s and server’s factotums until
a mutual authentication is reached.

Factotum also serves a double-purpose as asingle sign-
onagent with its ability to remember the currently active au-
thentication tokens for the private namespace it serves. Fac-
totum stores user-provided authentication information, such
as VNC or SSH passwords [9]. Instead of prompting the
user on each authentication, it simply uses the tokens it al-
ready holds, prompting only when they fail, which may hap-
pen with one-time password schemes such as crypto cards
or netkey. In effect, this creates an environment where pass-
words are not prompted for more than once, and once au-
thenticated with, remote servers remember the job’s owner
identity without compromising the integrity of the underly-
ing protocols.

Factotum protects the security of the account it serves by
holding all security keys in protected areas of main mem-
ory, making it invisible for other users on the system. It also
protects the running process’ image by disabling a kernel’s
ability to swap it out to secondary storage. Factotum is un-
able to keep state between restarts, because all keys are kept
in volatile memory cleared before starting each new Plan 9
process. To initialize it a user either supplies the passwords
requested, or bootstraps factotum on start-up by reading the
keys from a general-purpose encrypted data storage called
secstore [9], where access is controlled by an authentication

mechanism separate from the system.
The security protocols currently in use by Plan 9 include

X.509 certificates, RSA keys for use with SSH, the DES
challenge-response protocol, and some plain-text password
schemes such as the ones used by Telnet, FTP and VNC [9].

2.3. Plan 9 authentication in a Grid Environment

The proliferation of distributed and grid-like environ-
ments, each having multiple sites and numerous authentica-
tion domains, requires a reevaluation of the currently used
authentication mechanisms, usually based on a name and a
unique number designating a particular user on the system.
Plan 9 has already avoided that by not using a numerical
user ID, however the username of a participant is not suffi-
cient to provide all necessary information about the user’s
identity in a distributed environment anymore, and the po-
tential username clashes between grid sites need to be dealt
with by administrators early on in the environment’s design.

The scheme currently used by Globus creates a global
user namespace, where all necessary user information is
carried in their authentication information. Local grid nodes
then choose their own mapping from the global user ID to
a local user ID, of which there is a particular set and nam-
ing convention created beforehand to be used by Globus pa-
trons. For example jobs started by userandrey at a local
terminal run as userb102 at siteB and userc374 at site
C. The conversion between users is done transparently by
GridFTP while copying the files.

We are currently investigating a new system for iden-
tifying user’s memberships in organizations and locations
across the grid without necessarily storing all user informa-
tion on all sites. It involves designating users as members
of authentication domains, where membership is carried by
the user’s identification name as it appears on different grid
systems. For example, a process owned by userandrey ,
member of theucalgary authentication and administra-
tive domain, running on a remote grid node will appear
there as userandrey@ucalgary and will be unable to
access resources which a member of the remote administra-
tive domain with the same username may have access to.

Local authentication servers are able to request creden-
tials from the master auth servers for a member of a par-
ticular domain without having to store them locally. They
can also refuse authentication to untrusted members, even
though their credentials with the remote server may be
valid. This is implemented by extending the authentica-
tion server’s capabilities to include authentication via re-
mote systems and auth servers not handled by the immedi-
ate network being authenticated for via authentication prox-
ies.

This authentication scheme aids grids by allowing users
to keep their desired usernames across administrative do-



mains, while avoiding clashes with local users’ processes
and providing administrators with an easy way of identify-
ing the location of a particular user’s process. The authen-
tication server the user is assigned to in this case acts as
a global authentication agent for this user’s processes, au-
thenticating their identity everywhere on the grid. It also
simplifies administration by keeping all administration re-
lated tasks close to the originating site, instead of delegating
them to a centralized administrative entity.

3. Security

In the context of Grid Computing, a secure environment
is one that is able to protect communication between jobs on
the system from third party observers, protect jobs from ad-
verse effect caused by other jobs’ actions, and protect jobs
from resource starvation (prevent DoS attacks, or illegal re-
source utilization by other users).

Before comparing Globus and Plan 9’s solutions to these
problems, we highlight what is possibly the most important
security feature Plan 9 brings to Grid Computing – the con-
cept ofprivate namespaces underlying every aspect of the
distributed environment.

3.1. Private namespaces as a security feature in a
grid environment

Private namespaces [10] ensure that communication be-
tween processes or clients is restricted only to the parties
involved and is invisible to others. Each process on Plan 9
sees a private view of the underlying system comprised of
different resources’ file servers bound together in a tree-like
hierarchy called a namespace.

The primary security feature of private namespaces is to
restrict other clients from snooping over private commu-
nication channels, or knowing that they exist. User-level
mounts of remote systems in a process’ name space ensure
that remote grid-enabled resources can be brought in on de-
mand, and invisibly from third parties.

In Plan 9 child processes share their parent’s namespace
by default, unless a special argument has been given to
fork() to create a copy of the namespace. Clients willing
to share parts of their namespace, can do so by posting a file
descriptor pointing to the root of that namespace to a special
directory, which acts as a bulletin board for file descriptors.
There is no restriction on what may be shared, except the
restrictions imposed by file permissions associated with the
exported files, i.e., nobody will be able to access a resource
exported without any read or write permissions set.

3.2. Security in Globus

Current grids are difficult to operate securely due to their
highly distributed nature, the fact that they involve a multi-
tude of different hardware and software platforms, and the
lack of a single system administration authority. Being an
addition to the computing environment and not a standalone
system, Globus’ security features deal primarily with prov-
ing a user’s identity and encrypting the connection between
hosts, not with protecting the general integrity of the sys-
tem [16].

One particular difficulty that needs to be addressed in
Globus is protecting jobs from a breach in the security of the
underlying system. For example a user submitting Globus
jobs to a cluster cannot be guaranteed that the computational
result isn’t compromised or erroneous, or that the intellec-
tual property of the work is preserved. There is no mecha-
nism to restrict interaction between processes on the same
installation and in many environments such ashigh perfor-
mance computing it is desirable that jobs running on the
same host, or sets of hosts, are able to communicate be-
tween each other, but not in a way easily snooped by other
applications.

Using virtual environments restricts communication
with other processes and secures the system, but has per-
formance implications that are difficult to predict at best.
There have been implementations of private name spaces by
means of virtualization of the host OS [18], whether through
support for private namespaces in the kernel [8], or through
third-party solutions like VMWare, where a client’s session
on a particular node is started as a virtual machine contain-
ing resources available only to the user.

Sand-boxing approaches, including an implementation
of private namespaces for various operating systems on
which Globus runs [8] have generally failed to yield a se-
cure system due to them being constrained to the particular
node they run on, and the fact that there is no standard im-
plementation of sand-boxes that would work in a heteroge-
neous environment.

3.3. Security in Plan 9

Plan 9 as an operating system does not rely on third party
additions to handle communications with hardware or be-
tween nodes. It has been designed to enforce a strict secu-
rity policy to which all programs must adhere [9].

Key elements of the security infrastructure in Plan 9 are
the lack ofsuperuser account and encryption of all com-
munication via a ticket-based protocol using authentica-
tion mechanisms independent of the session or environ-
ment. The OS also provides encrypted data storage as a
service. Furthermore, in Plan 9 all processes operate in pri-
vate namespaces.



The kernel delegates most of the security infrastructure
considerations to the interprocess communication drivers
such asmount , bind and the protocol carrying all infor-
mation across the system –9P. A grid job does not have
to be concerned with the underlying security infrastructure.
As long as it can ensure on its end that the security of its fac-
totum is not compromised, for example by exporting facto-
tum’s namespace to other processes with write permissions,
its environment is secure.

4. Resource discovery

Resource discoveryservices are provided in order to al-
low queries to be made about the existence and features of
services available in a particular environment. There are
two different approaches to resource discovery on the grid:
creating a brand new set of tools suited especially to the
new distributed environment, or extending a familiar set of
operating system utilities to work in a networked fashion
between different nodes of the system.

4.1. Resource discovery in Globus

The Globus Toolkit’s Monitoring and Discovery Service,
MDS [19], has adapted the OpenLDAP [17] resource dis-
covery protocol. OpenLDAP is an open source solution
which presents clients with a hierarchical view of system
resources, allowing remote agents to query it for particular
subsets of information.

Several different types of resources may be of interest to
Grid jobs. These could include hardware architecture and
hardware configuration, i.e. the number of CPUs and their
speed, amount of memory and disk space available, net-
work capabilities, etc. Also the operating system running
on the computer, available software and its versions, cur-
rent or past system utilization or any restrictions imposed
on the system externally, such as prior reservations. Grid
sites often choose to add their own additional resources to
the set of default ones.

In its current form MDS requires specialized OpenLDAP
clients to query the information. Administrators usually
provide their own set of tools for sorting and filtering the
information in a particular manner, including formatting it
for different viewing formats, such as web pages, customiz-
ing and replacing the OpenLDAP ones. Sometimes such
tools are developed by the Grid administrators and are dif-
ferent at each site, which may lead to discrepancies between
sites, and may require rewriting a program for each site.

4.2. Resource discovery in Plan 9

Resource discovery solutions in the context of a single
distributed environment have existed since the very first

Plan 9 release in 1991. A special program, calledsrv ,
serves as a filter, relaying messages between two names-
paces. A process willing to share its namespace with others
canposta file descriptor pointing to the root of a namespace
via thesrv utility to a specialized location on the system
– /srv . Jobs thenmount the desired file server hierarchy
from /srv , if file permissions allow.

Extending this scheme to a grid environment can be ac-
complished by a file server hierarchy, used instead of the
flat directory style of/srv . The first level of this hierarchy
contains a subdirectory for each site being part of the grid
and currently operational. Sites register their readiness to
participate by posting a file descriptor pointing to their own
/srv .

Locally, each site maintains a/srv where nodes post
file descriptors announcing operational readiness. At the
leaf directory is a description of the state of a particular
node, containing a set of files describing architecture, num-
ber of processes, memory, swap space, and other statistics.

Note that any non-leaf/srv contains no knowledge of
the actual resources that have subscribed to it. It simply
serves as a link between a name of a site, and the file de-
scriptor pointing to the root of that site’s/srv . There is no
polling for resources except by the end client.

Using this scheme it is possible to obtain any set of in-
formation about the entire grid without having to resort to
anything other than a set of tools already familiar to the
system’s users. For example, to find the names and IP ad-
dresses of all nodes currently active in the grid, a client can
import /srv from the a main repository on the grid and run
the command:cat /srv/*/*/name which will display
the file containing the name of the node from each site’s
subscribed set of services. More complex examples are built
with the same set of operations used to write shell scripts.

One of the benefits of such scheme, as was just il-
lustrated, is that there is no requirement for specialized
tools andresource viewers as with OpenLDAP – programs,
scripts and users can use their own set of familiar utilities,
such asls , cd andcat to accomplish what otherwise may
require a separate utility complete with graphical interface.

5. Data management

Data management involves data transfer and replication
services, allowing objects to be moved between different
grid nodes in a fast and secure manner. Replication tracks
versions of objects or parts thereof, and their locations.

5.1. Data management in Globus

Globus has been designed around the concepts of data
management and replication from its very beginning. One
of the first protocols to officially be designated as part of the



Globus Toolkit was GridFTP [12], which allows fast data
transfer between nodes on the grid and underlies important
parts of many utilities built on top of Globus, including file
staging and remote job execution. GridFTP supports some
advanced networking features and optimizations, such as
partial file transfers and parallel transfers.

Replication services [13] aid the user in locating data on
the grid, often scattered across several geographically di-
verse locations. A replica management service is able to
track various copies of a data file, to tag versioning infor-
mation to data sets and offers reliable means for putting
together a complete data object out of geographically and
administratively disparate data files. Most current attempts
to provide replication services for grids are researched as
solutions built on top of the Globus toolkit [14].

5.2. Data management in Plan 9

In Plan 9 the unit of communication is the data stream
of file operations. The protocol underlying every transac-
tion, 9p, is universal. Every remote operation is done via a
mounted, orimported, name space and it is very easy to ex-
tend the set of name space operations to incorporate new
ideas such as compressed, encrypted or parallelized data
transfers, or even fault tolerant and cached network con-
nections. User level caching of file server connections, for
example, has been implemented already and has been in use
for years.

Unlike GridFTP, the data transfer mechanism on a Plan
9 grid is transparent to the user. As users run processes
on remote Grid nodes, the namespace on the remote node
is exported from local node and imported to the remote
node with no involvement from any of the user’s processes.
Plan 9 has no need of a data transfer mechanism such as
GridFTP, because all functionality it provides is abstracted
away into the private name space mechanism, which han-
dles communications with remote file servers.

A Plan 9 advancedimport exercises one or more of
features of theimport program, such as compression,
encryption, fault tolerance or parallel data transfer. This
feature then persists for the entire length of the connec-
tion, meaning that even though different programs may be
used over that link, none of those programs need to know
whether their data traverses the link compressed or en-
crypted. Fault tolerance can be achieved by imposing a filter
calledaan, or always available network, which buffers 9P
messages whenever the network is down, and reestablishes
a data stream connection when the network is back up.

Data replication in Plan 9 is accomplished via a replica
service which exists as part of the operating system. It usu-
ally contains a main repository to which people canpush
additions and modifications of files in a fashion similar to
CVS, from which clients can selectively download (repli-

cate) files they need, or which have been more recently up-
dated than the local copy.

The Plan 9 replica does not require all files of a particu-
lar repository to be local to the system, allowing for building
a hierarchical structure of replicas, where a master reposi-
tory could be queried to examine whether any data files on
any grid node has changed, or to examine whether any local
replica sites have had any updates.

It is also possible to query a replica without committing
any changes, or to examine its log file for the history of
a particular data set. Paired with the infinite history and
back-log capability of a the Venti [15] permanent storage
server where the data is archived, it is possible to retrieve
any version of any data file ever stored in a replica.

6. Conclusion

We have described and compared two possibilities for
managing Grid Computing environments: Globus, a mid-
dleware toolkit that adds grid services to existing operating
systems, and Plan 9, an operating system providing features
require to support large scale distributed computing as part
of its design.

Naturally no comparison will be complete without eval-
uating pros and cons of the systems compared. In terms of
features and usability the Globus Toolkit eases the transi-
tion from local clusters to the cross-organizational nature of
the grid. It builds upon a mature core of operating systems
widely used in scientific environments. Plan 9 on the other
hand requires a departure from the familiar set of UNIX
paradigms, but with its radical design facilitates network
computing at a level other systems are unable to achieve.

Several obstacles to Plan 9’s widespread adoption have
hindered its growth in the past. It had a closed-source de-
velopment model for the first ten years of its existence and
some prohibitive restrictions in its initial open source li-
cense. These issues have now been resolved so there is no
reason why the research community shouldn’t investigate
this OS as a possible solution for building computational
grids.

Although Plan 9 was designed to work in a single ad-
ministrative domain, the simplicity, clarity and generality of
its model allow it to be extended to the inter-organizational
world of grid computing. This is easier than adapting a set
of systems originally created for a timeshared environment.

Plan 9 shouldn’t be looked at as a replacement for Grid
Toolkits, instead we advocate examining Plan 9 in its native
environment and taking its design decisions into considera-
tion when building future grids. We would like to see envi-
ronments connecting together around a unified lightweight
protocol such as 9P and the ability to simplify the creation
of grid services to the level of Plan 9, where to create a grid
service one only needs to export the namespace in which it



presents its files. We believe this will create a simpler and
more secure Grid Computing environment.

References

[1] T. L. Sterling, J. Salmon, D. J. Becker, D. F. Savarese:
How to Build a Beowulf, The MPI Press, 1999.

[2] G. Bell, J Grey: What’s next in high performance
computing? Communications of the ACM, vol 45, is-
sue 2, 2002.

[3] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Gra-
ham, C. Kesselman:Grid Service Specification, Draft
3, Global Grid Forum, July 2002.

[4] I. Foster, C. Kesselman, S. Tuecke:The Anatomy
of the Grid: Enabling scalable virtual organizations,
International J. Supercomputer Applications, 15(3),
2001.

[5] J. Nick I. Foster, C. Kesselman, S. Tuecke:The Phys-
iology of the Grid: An Open Grid Services Architec-
ture for Distributed Systems Integration, Open Grid
Service Infrastructure WG, Global Grid Forum, June
22, 2002.

[6] H. Trickey: APE - The ANSI/POSIX Environment,
Plan 9 Programmer’s Manual, Volume 2, AT&T Bell
Laboratories, Murray Hill, NJ, 1995.

[7] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K.
Thompson, H. Trickey, P. Winterbottom:Plan 9 from
Bell Labs, Computing Systems, 8(3):221-254, 1995.

[8] R. Minnich: Private Namespaces for Linux, Dr.
Dobb’s Journal, Dec 2001.

[9] R. Cox, E. Grosse, R. Pike, D. Presotto, S. Quinlan:
Security in Plan 9, Proceedings of the 11th USENIX
Security Symposium, pp. 3–16, 2002.

[10] R. Pike, D. Presotto, K. Thompson, H. Trickey, P.
Winterbottom: The Use of Name Spaces in Plan 9,
Op. Sys. Rev., Vol. 27, No. 2, April 1993, pp. 72-76.

[11] J. Novotny, S. Tuecke, V. Welch:An Online Creden-
tial Repository for the Grid: MyProxy. Proceedings
of the Tenth International, Symposium on High Per-
formance Distributed Computing (HPDC-10), IEEE
Press, August 2001.

[12] Globus Project:GridFTP - Universal Data Transfer
for the Grid, White Paper. September 5, 2000.

[13] D. Dullmann, W. Hoschek, J. Jean-Martinez, A.
Samar, H. Stockinger, K. Stockinger:Models for
Replica Synchronisation and Consistency in a Data
Grid, 10th IEEE Symposium on High Performance
and Distributed Computing

[14] K. Ranganathan, Adriana Iamnitchi, and I. Foster:Im-
proving Data Availability through Dynamic Model-
Driven Replication in Large Peer-to-Peer Communi-
ties, Proceedings of Global and Peer-to-Peer Comput-
ing on Large Scale Distributed Systems Workshop,
Berlin, Germany, May 2002.

[15] S. Quinlan,S. Dorward:Venti: a new approach to
archival storage, Conference on File and Storage
Technologies, Monterey, CA, 28–30 January 2002.

[16] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K.
Czajkowski, J. Gawor, C. Kesselman, S. Meder,
L. Pearlman, S. Tuecke:Security for Grid Ser-
vices, Twelfth International Symposium on High Per-
formance Distributed Computing (HPDC-12), IEEE
Press, June 2003.

[17] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Gra-
ham, C. Kesselman, T. Maguire, T. Sandholm, P. Van-
derbilt, D. Snelling:Open Grid Services Infrastructure
(OGSI) Version 1.0, Global Grid Forum Draft Recom-
mendation, 6/27/2003.

[18] R. Figueiredo, P. Dinda, J. Fortes:A Case for
Grid Computing on Virtual Machines, In Proc. Intl.
Conf. on Distributed Computing Systems (ICDCS),
04/2003.

[19] S. Fitzgerald, I. Foster, C. Kesselman, G. von
Laszewski, W. Smith, S. Tuecke:A Directory Ser-
vice for Configuring High-Performance Distributed
Computations, Proc. 6th IEEE Symposium on High-
Performance Distributed Computing, pp. 365-375,
1997.

[20] The OpenPBS Project:http://www.openpbs.org.

[21] The Condor Project:http://www.cs.wisc.edu/condor/.

[22] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson,
and B. Welch:The Sprite network operating system,
IEEE Computer, 21(2):23–36, February 1988.

[23] S.J. Mullender, G. Van Rossum, A.S. Tanenbaum, R.
Van Renesse, H. Van Staveren:Amoeba: A dis-
tributed operating system for the 1990s, IEEE Com-
puter, 14:365–368, May 1990.


